## Do fluorescent lamps really use less energy than incandescent bulbs?

#### I have been told, that incandescent light bulbs are being phased out to be replaced by fluorescent bulbs that use less energy. This will happen I think next year? Is that true? — CD, Abilene, Texas

Incandescent lightbulbs will be phased out beginning with 100-watt bulbs in 2012 and ending with 40-watt bulbs in 2014. The reason for this phase out is simple: incandescent lightbulbs are horribly energy inefficient.

Light is a form of energy, so you can compare the visible light energy emitted by any lamp to the energy that lamp consumes. According to that comparison, an incandescent lightbulb is roughly 5% efficient—a 100-watt incandescent bulb emits about 5 watts of visible light. In contrast, a fluorescent lamp is typically about 20% energy efficient—a 25-watt fluorescent lamp emits about 5 watts of visible light.

Another way to compare incandescent and fluorescent lamps is via their lumens per watt. The lumen is a standard unit of usable illumination and it incorporates factors such as how sensitive our eyes are to various colors of light. If you divide a light source’s light output in lumens by its power input in watts, you’ll obtain its lumens per watt.

For the incandescent lightbulb appearing at the left of the photograph, that calculation yields 16.9 lumens/watt. For the “long life” bulb at the center of the photograph, it give only 15.3 lumens/watt. And for the color-improved bulb on the right of the photograph, the value is only 12.6 lumens/watt. Our grandchildren will look at this photograph of long forgotten incandescent bulbs and be amazed that we could squander so much energy on lighting.

The fluorescent lamp in the other photograph is far more efficient. It produces more useful illumination than any of the three incandescent bulbs, yet it consumes just over a quarter as much power. Dividing its light out in lumens by its power consumption in watts yields 64.6 lumens/watts. It is 4 times as energy efficient as the best of the incandescent lightbulbs. Some fluorescent lamps are even more efficient than that.

Another feature to compare is life expectancy. Even the so-called “long life” incandescent predicts a 1500 hour life, which is only 15% of the predicted life for the fluorescent lamp (10,000 hours). Although the fluorescent costs more, it quickly pays for itself in energy use and less frequent replacement. You should recycle a fluorescent lamp because it does contain a tiny amount of mercury, but overall it’s a much more environmentally friendly light source.

## Lightbulbs and Power

#### What does it mean if a light bulb uses 60 watts? — B, Los Angeles

The watt is a unit of power, equivalent to the joule-per-second. One joule is about the amount of energy it takes to raise a 12 ounce can of soda 1 foot. A 60 watt lightbulb uses 60 joules-per-second, so the power it consumes could raise a 24-can case of soda 2.5 feet each second. Most tables are about 2.5 feet above the floor. Next time you leave a 60-watt lightbulb burning while you’re not in the room, imagine how tired you’d get lifting one case of soda onto a table every second for an hour or two. That’s the mechanical effort required at the generating plant to provide the 60-watts of power you’re wasting. If don’t need the light, turn off lightbulb!

## Do brownouts or other power outages damage appliances?

#### If a home looses some of its power during a power outage and the lights shine dim, will it burn up the motor in the refrigerator? Will it damage other appliances (TV, VCR. stereo. etc)? Should the main disconnect be shut off? — J, Ohio

Power outages come in a variety of types, one of which involves a substantial decrease in the voltage supplied to your home. The most obvious effect of this voltage decrease is the dimming of the incandescent lights, which is why it’s called a “brownout.” The filament of a lightbulb is poor conductor of electricity, so keeping an electric charge moving through it steadily requires a forward force. That forward force is provided by the voltage difference between the two wires: the one that delivers charges to the filament and the one that collects them back from the filament. As the household voltage decreases, so does the force on each charge in the filament. The current passing through the filament decreases and the filament receives less electric power. It glows dimly.

At the risk of telling you more than you ever want to know, I’ll point out that the filament behaves approximately according to Ohm’s law: the current that flows through it is proportional to the voltage difference between its two ends. The larger that voltage difference, the bigger the forces and the more current that flows. This ohmic behavior allows incandescent lightbulbs to survive decreases in voltage unscathed. They don’t, however, do well with increases in voltage, since they’ll then carry too much current and receive so much power that they’ll overheat and break. Voltage surges, not voltage decreases, are what kill lightbulbs.

The other appliances you mention are not ohmic devices and the currents that flow through them are not simply proportional to the voltage supplied to your home. Motors are a particularly interesting case; the average current a motor carries is related in a complicated way to how fast and how easily it’s spinning. A motor that’s turning effortlessly carries little average current and receives little electric power. But a motor that is struggling to turn, either because it has a heavy burden or because it can’t obtain enough electric power to overcome starting effects, will carry a great deal of average current. An overburdened or non-starting motor can become very hot because it’s wiring deals inefficiently with the large average current, and it can burn out. While I’ve never heard of a refrigerator motor dying during a brownout, it wouldn’t surprise me. I suspect that most appliance motors are protected by thermal sensors that turn them off temporarily whenever they overheat.

Modern electronic devices are also interesting with respect to voltage supply issues. Electronic devices operate on specific internal voltage differences, all of which are DC — direct current. Your home is supplied with AC — alternating current. The power adapters that transfer electric power from the home’s AC power to the device’s DC circuitry have evolved over the years. During a brownout, the older types of power adapters simply provide less voltage to the electronic devices, which misbehave in various ways, most of which are benign. You just want to turn them off because they’re not working properly. It’s just as if their batteries are worn out.

But the most modern and sophisticated adapters are nearly oblivious to the supply voltage. Many of them can tolerate brownouts without a hitch and they’ll keep the electronics working anyway. The power units for laptops are a case in point: they can take a whole range of input AC voltages because they prepare their DC output voltages using switching circuitry that adjusts for input voltage. They make few assumptions about what they’ll be plugged into and do their best to produce the DC power required by the laptop.

In short, the motors in your home won’t like the brownout, but they’re probably protected against the potential overheating problem. The electronic appliances will either misbehave benignly or ride out the brownout unperturbed. Once in a while, something will fail during a brownout. But I think that most of the damage is down during the return to normal after the brownout. The voltages bounce around wildly for a second or so as power is restored and those fluctuations can be pretty hard some devices. It’s probably worth turning off sensitive electronics once the brownout is underway because you don’t know what will happen on the way back to normal.

## Is the total energy savings still significant for long tube fluorescent lights, …

#### Is the total energy savings still significant for long tube fluorescent lights, as compared to incandescent lights, when you consider the energy involved in manufacturing all the components of the lights? — AB, San Antonio, TX

Yes, fluorescents are more energy efficient overall. To begin with, fluorescent lights have a much longer life than incandescent lights—the fluorescent tube lasts many thousands of hours and its fixture lasts tens of thousands of hours. So the small amount of energy spent building an incandescent bulb is deceptive—you have to build a lot of those bulbs to equal the value of one fluorescent system.

Second, although there is considerable energy consumed in manufacturing the complicated components of a fluorescent lamp, it’s unlikely to more than a few kilowatt-hours—the equivalent of the extra energy a 100 watt incandescent light uses up in a week or so of typical operation. So it may take a week or two to recover the energy cost of building the fluorescent light, but after that the energy savings continue to accrue for years and years.

## Is there any equipment that can track people in a large, dense forest?

#### Is there any equipment that can track people in a large, dense forest? — BRAR, India

To track someone in a forest, he must be emitting or reflecting something toward you and doing it in a way that is different from his surroundings. For example, if he is talking in a quiet forest, you can track him by his sound emissions. Or if he is exposed to sunlight in green surroundings, you can track him by his reflections of light.

But while both of these techniques work fine at short distances, they aren’t so good at large distances in a dense forest. A better scheme is to look for his thermal radiation. All objects emit thermal radiation to some extent and the spectral character of this thermal radiation depends principally on the temperatures of the objects. If the person is hotter than his surroundings, as is almost always the case, he will emit a different spectrum of thermal radiation than his surrounds. Light sensors that operate in the deep infrared can detect a person’s thermal radiation and distinguish it from that of his cooler surroundings. Still, viewing that thermal radiation requires a direct line-of-sight from the person to the infrared sensor, so if the forest is too dense, the person is untrackable.

## How does a halogen bulb work and is it really better than a regular bulb?

#### How does a halogen bulb work and is it really better than a regular bulb?

A halogen bulb uses a chemical trick to prolong the life of its filament. In a regular bulb, the filament slowly thins as tungsten atoms evaporate from the white-hot surface. These lost atoms are carried upward by the inert gases inside the bulb and gradually darken the bulb’s upper surface. In a halogen bulb, the gases surrounding the filament are chemically active and don’t just deposit the lost atoms at the top of the bulb. Instead, they react with those tungsten atoms to form volatile compounds. These compounds float around inside the bulb until they collide with the filament again. The extreme heat of the filament then breaks the compounds apart and the tungsten atoms stick to the filament.

This tungsten recycling process dramatically slows the filament’s decay. Although the filament gradually develops thin spots that eventually cause it to fail, the filament can operate at a higher temperature and still last two or three times as long as the filament of a regular bulb. The hotter filament of a halogen bulb emits relatively more blue light and relatively less infrared light than a regular bulb, giving it a whiter appearance and making it more energy efficient.

## How does an acetylene miner’s lamp work? How does a propane gas lamp work? Why d…

#### How does an acetylene miner’s lamp work? How does a propane gas lamp work? Why do gas lamps need a mantle and what is the mantle made of? — DK, Washington, DC

An acetylene miner’s lamp produces acetylene gas through the reaction of solid calcium carbide with water. An ingenious system allows the production of gas to self-regulate—the gas pressure normally keeps the water away from the calcium carbide so that gas is only generated when the lamp runs short on gas. In contrast, a propane lamp obtains its gas from pressurized liquid propane. Whenever the propane lamp runs short on gas, the falling gas pressure allows more liquid propane to evaporate.

Only the propane lamp needs a mantle to produce bright light. That’s because the hot gas molecules that are produced by propane combustion aren’t very good at radiating their thermal energy as visible light. The mantle extracts thermal energy from the passing gas molecules and becomes incandescent—it converts much of its thermal energy into thermal radiation, including visible light. Mantles are actually delicate ceramic structures consisting of metal oxides, including thorium oxide. Thorium is a naturally occurring radioactive element, similar to uranium, and lamp mantles are one of the few unregulated uses of thorium.

The light emitted by these oxide mantles is shorter in average wavelength than can be explained simply by the temperature of the burning gases, so it isn’t just thermal radiation at the ambient temperature. The mantle’s unexpected light emission is called candoluminescence and is thought to involve non-thermal light emitted as the result of chemical reactions and radiative transitions involving the burning gases and the mantle oxides.

In contrast, the acetylene miner’s lamp works pretty well without a mantle. I think that’s because the flame contains lots of tiny carbon particles that act as the mantle and emit an adequate spectrum of yellow thermal radiation. Many of these particles then go on to become soot. A candle flame emits yellow light in the same manner.

One last feature of a properly constructed miner’s lamp, a safety lamp, is that it can’t ignite gases around it even if those gases are present in explosive concentrations. That’s because the lamp’s flame is surrounded by a fine metal mesh. This mesh draws heat out of any gas within its holes and thus prevents the flame inside the mesh from igniting any gas outside the mesh.

## How are incandescent light bulbs made?

#### How are incandescent light bulbs made? — SU

The glass enclosures are made from a ribbon of hot glass that’s first thickened and then blown into molds to form the bulb shapes. These enclosures are then cooled, cut from the ribbon, and their insides are coated with the diffusing material that gives the finished bulb its soft white appearance.

The filament is formed by drawing tungsten metal into a very fine wire. This wire, typically only 42 microns (0.0017 inches) in diameter is first wound into a coil and then this coil is itself wound into a coil. The mandrels used in these two coiling processes are trapped in the coils and must be dissolved away with acids after the filament has been annealed.

The finished filament is clamped or welded to the power leads, which have already been embedded in a glass supporting structure. This glass support is inserted into a bulb and the two glass parts are fused together. A tube in the glass support allows the manufacturer to pump the air out of the bulb and then reintroduce various inert gases. When virtually all of the oxygen has been eliminated from the bulb, the tube is cut off and the opening is sealed. Once the base of the bulb has been attached, the bulb is ready for use.

## I understand that an ear thermometer measures a person’s temperature by studying…

#### I understand that an ear thermometer measures a person’s temperature by studying the thermal radiation emitted by their ear. What is the farthest range that a person can emit thermal radiation that can still be received? Does this range depend on how hot the inner person is? — M

The thermal radiation that a person emits is mostly infrared light and, like all light, it can travel forever if nothing gets in its way. In principle, if you can observe something through a telescope, you can also measure its temperature. For example, astronomers can measure the temperature of a distant star by studying the star’s spectrum of thermal radiation.

However, there are several complications when using this technique to measure a person’s temperature. First, anything that lies between the person and you, and that absorbs or emit thermal radiation, will affect your measurement. That’s because some of the thermal radiation that appears to be coming from the person may be coming from those in between things. Fortunately, air is moderately transparent to thermal radiation but many other things aren’t. In fact, to get an accurate reading of person’s temperature, you’d have to cool the telescope and the light detector so that they don’t add their own thermal radiation to what you observe. You’d also have to use a mirror telescope because glass optics absorb infrared light.

Second, the temperature that you observe will be that of the person’s skin and not their inner core temperature. That’s because the person’s skin absorbs any infrared light from inside the person and it emits its own infrared light to the world around the person. You can’t observe infrared light from inside the person because the person’s skin blocks your view. All you see is their skin temperature.

## How does an ear thermometer work so quickly?

#### How does an ear thermometer work so quickly? — SN, West Covina, California

An ear thermometer examines the spectrum of thermal radiation emitted by the inner surfaces of a person’s ear. All objects emit thermal electromagnetic radiation and that radiation is characteristic of their temperatures—the hotter an object is, the brighter its thermal radiation and the more that radiation shifts toward shorter wavelengths. The thermal radiation from a person’s ear is in the invisible infrared portion of the light spectrum, which is why you can’t see people glowing. But the ear thermometer can see this infrared light and it uses the light to determine the ear’s temperature. The thermometer’s thermal radiation sensor is very fast, which accounts for the speed of the measurement.