How can I build an AM radio?

How can I build an AM radio?

That’s a very open ended question so I’ll describe the simplest AM radio I can think of—a crystal radio. A crystal radio already addresses most of the issues of AM radio and more sophisticated AM radios just improve on its performance.

You need only four basic components for a crystal radio: an antenna, a tank circuit, a diode, and a high-impedance earphone.

The antenna is a long wire that projects upward into the electromagnetic fields of the passing radio wave so that electric charges begin to move up and down its length. The ideal length for this wire is a quarter of the wavelength of the wave you’re trying to receive, but since that’s hundreds of meters for a typical AM station, you’ll have to settle for a shorter than ideal antenna.

The tank circuit is a coil of wire that’s connected at each end to the two ends of a capacitor. In a typical crystal radio, one of these items—either the coil or the capacitor—is adjustable and forms the tuning element that allows you to select a particular AM station. The tank circuit is a resonant device—electric charges and current flow back and forth through it rhythmically at a specific frequency. If that resonant frequency is adjusted so that it coincides with the transmission frequency of an AM radio station, the small currents flowing in the antenna that’s connected to the tank circuit will excite large movements of charge and current in the tank circuit.

The diode is also connected to the tank circuit. Its job is to extract some of the charge that oscillates back and forth in the tank circuit and to send that charge to the earphone. By allowing current to flow only in one direction, the diode samples the overall amount of charge moving in the tank circuit. What it passes to the earphone is a measure of how strong the radio wave is, which is actually the form in which the AM radio station is transmitting sound information.

The high-impedance earphone uses the diode’s tiny charge deliveries to reproduce sound. The diaphragm inside the earphone moves back and forth as the amount of charge passing through the diode fluctuates up and down. Each time the radio wave increases in strength, the diaphragm moves in one direction. Each time the radio wave decreases in strength, the diaphragm moves in the other direction. Thus as the radio station varies the strength of its radio wave, the earphone’s diaphragm moves back and forth and it reproduces the sound.

Leave a Reply